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A New Error Analysis for a Cubic Spline Approximate 
Solution of a Class of Volterra 
Integro-Differential Equations 

By Joseph A. Guzek and Gene A. Kemper 

Abstract. In this paper a third-order numerical method is considered which utilizes a 
twice continuously differentiable third degree spline to approximate the solution of 

x(t) = F t, x(t), J'K(t, u, x(ut)) dit 

x(a) = xo, 

at discrete points in the interval [a, b]. The error analysis uses a technique usually associated 
with linear multistep methods. 

I. Introduction. In this paper, consideration is directed to the Volterra integro- 
differential equation 

(1) x(t) = F(t, x(t), f K(t, u, x(u)) du), a < t < b, 

with the initial condition x(a) = x,. A third-order numerical method is considered 
which utilizes a twice continuously differentiable third degree spline to approximate 
the solution x at discrete points in the interval [a, b]. 

Other authors, e.g. Hung [5], have applied cubic splines to obtain an approximate 
solution of a scalar Volterra integro-differential equation. This paper considers the 
method as applied to vector equations. More important, however, is the error analysis 
presented herein. This analysis uses a lemma usually associated with linear multistep 
methods. The utilization of this lemma allows the cubic spline method to be applied 
to a larger class of equations than considered by Hung with, however, a corresponding 
reduction in the order of the errors. In particular, Hung requires the solution of (1) 
be of class C6[a, b] while the analysis presented here requires only C4[a, b]. Accord- 
ingly, Hung achieves a discretization error 0(h4) while this analysis achieves 0(h3). 

II. Notation and Assumptions. Let R(F) and R(K) be the regions defined by 

R(F) = {(t, x, y) a ? t ? b; x, y E En} 

and 

R(K) = {(t, u, y) a < u < t ? b; y E El, 
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where En is real Euclidean n-space. Moreover, let the nth order matrices F'2' F'3' 
and K(3' be such that the respective elements are given by 

(2) F() = 
a-, - = a-, and K(3) = &aT (2) F,, 9 F adK( 

Then, the following assumptions are made: 
(a) Equation (1) has a unique solution. 
(b) F and K are continuous mappings of R(F) and R(K) to E'", respectively. 
(c) The matrix elements (2) are continuous and bounded. 
Assumption (c) has two important implications. First, there exist constants 

F , V and U) such that JIF2 __ 11 F F2) F" ? F' and IIK3'l < '3 
where 11 11 will be used interchangeably to denote compatible matrix and vector 
norms. Secondly, Buck [1, p. 268], for (t, x, y), (t, x, y) C R(F) there exist p, C EG , 
i = 1, ***, n, such that 

F(t, x, y) - F(t, x, y) = F(2)(x - 

where F'2) = (F'2)(t, p1, y)). Similarly, for (t, x, y), (t, x, y) G R(F) and for (t, u, v), 
(t, u, v) C R(K), there are q,, r, C En, i = 1, , n, such that 

F(t, x, y) - F(t, x, y) = F(?3(y - y) 

and 

K(t, u, v) - K(t, u, v) = K'3'(v - 

where F'3 = (F'3'(t, x, q)) and K'3' = (K'(t, Ju, r,)). 

III. The Method. Let [a, b] be divided into N equal subintervals of length 
h = (b - a)/N with endpoints t,, ti, , t ,, called nodes. Let Xk, Xk and xk denote 
approximations for x(tk), k(tk) and x(tk), respectively. The n-dimensional cubic 
spline S on [a, b] is defined as follows: For t G [tk, tk?1], S is denoted by Sk and is 
defined by 

(t- tk 
)2 (t - tk )3 

(3) Sk(t) = Xk + (t - tk)Xk + 2 Xk + 3h? k- Xk h~k) 

Note that S(tk) = XI, Sk(tk) = Xk, Sk(tk) = Xk and Sk(tk4 1) = Xk1. 

The approximate solution to (1) is obtained by replacing the integral by a nu- 
merical quadrature formula and requiring that the resulting equation be satisfied 
at the nodes. Thus, if the cubic spline S replaces x in this equation, (1) is replaced by 

(4) Sk(tk+l) = F tk+19 Sk(tk+]), h E wk K(tk+1, t,, S,-,(t,)) 
1 =O 

where the weights w, are bounded and depend on the numerical quadrature formula 
used and where S.1(to) x0. Then, using Xk = Sk l(tk), Xk = Sk l(tk), g;C = S, l(tk) 

and -1k+1 = SA(tk+A), (4) becomes 

(5) xk+1 = H(*k+l) 
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where 

h2 h 
H(*k+l) = F(tk+l, Xk + hxk + 2 x + - 1 k - h54) qk+l) 2 3 

with 

k 

qk+l = h E w, K(tk+1 , ti , xl) 
l =0 

+ hwk+l K(tk+l, tk+1, Xk + hxk + 2 2k + 30(4 +, - Xk - hAxk)) 

All quantities in (5) are known except kx+1. Since ixk+1 determines Sk, the values 
Xk+1 = Sk(tk+l) and Xk+1 = Sk(tk+l) follow. (Although (5) is used to determine xk, 

it is convenient to use (4) in the error analysis to follow.) 
It follows, in the usual straightforward manner, from assumption (c) that, for x, 

(E G 

HH~x) - H(~)H h hF1 2I+h 2 1Wk+j 1 ki) 
(3 

|I IH(x) - H(X?) I I < _(2' +X h ,,JIII 

Thus, for h sufficiently small the mapping given by (5) is a contraction. This proves 
the following theorem. 

THEOREM 1. For H as defined by (5) and with assumption (c) satisfied, it follows 
that, for sufficiently small h, H is a contraction mapping. 

Thus, (5) can be used iteratively to determine x,, i = r, , N, where r depends 
on the starting method used. 

IV. Error Analysis. Let E(t) = x(t) - S(t). Then, from (1) and (4), there 
follows 

P(tk) = x(tk), f K(tk, U, X(u)) du) F(tk, Sk l(tk) f K(tk, u, x(u)) du) 

+ F Stk, Sl(tk), f K(tk, u, x(u)) du) 

F(tk, Skl(tk), h E w, K(tk, t, x(tJ)) 

+ F(tk, SkJ(tk), h >L w, K(tk, t,, x(t ))) 

- F(tk, SkJl(tk), h > w K(tk, ti, Si- (0) 

Thus, in view of assumption (c), 

k 

(6) J(tk) = F ) E(tk>) + O(hp) + hF(k) ( w, K,2 2)E(tk ) (k)~~ ~~~~~~~~~~~~~ = wKE), 
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where F k2 and F"' indicate the matrices F'2' and F'3' depend on the index k and 
K(k, indicates the matrix depends on the indices k and i. Furthermore, the nu- 
merical quadrature formula is assumed to be such that 

trk k 

] K(tk , u, x(u)) du - h E w, K(tk , t,, x(t,)) = 0(h') 

where O(h') is a vector with components all O(h'). 
The error analysis development is to obtain an equation involving E and E at 

the nodes. Then, (6) is used to provide an equation in E only. The error information 
at the nodes is then used to obtain error bounds at nonnodal points. 

To proceed with the error analysis at the nodes, it is assumed the solution x 
C(4'[a, b]. Then, for t E [tk, tk+1], 

(7) E(t) = E(tk) + (t - tj)E(tk) + E(tk) + -- E(tk) + (h 4), 2 6 

(8) E(t) = L(tk) + (t - tkC)E(tk) + ( 2 k) E(tkC) + &(h3), 2 

and 

(9) E(t) = E(tk) + (t - tkc)E(tk) + &(h2). 

(Since S(4) = 0, the error terms involve only the solution x and not the spline S.) 
Evaluation of (7) and (8) at tk+l and elimination of E(tk) provides 

2h . h h24 
(10) E(tk+l) = E(tk) + -3 E(tk) + - E(tk +l) + E(tk)+ (h 33 6 

while elimination of E(tk) provides 

h3 h h 4 

(11) E(tk) = E(tk) - E(tkt.l) + - E(tk) + - E(tk+l) + &(h4). 12 ~~ ~~~2 2 

Evaluation of (9) at tk+l and substitution of E(t k) from (11) yields 

12 12 6. 6.2 
(12) E(tk+l) = E(tk) +-h2 E(tk) --2 E(tk -1) + - E(tk) + - E(tk +l) + 6(h2) h h ~~~h h + 

Reduction of subscripts by one in (12) and substitution of the resulting expression 
for E(tk-l) into the equation which results from the reduction of the subscripts 
by one in (10) yields 

h ~~~ ~~~2h . 
h4) - E(tk) = -E(tk) + E(tk-l) + - E(tk) + - E(tk-l) + O(h4), 6 3 3 

which when substituted in (10) provides 

(13) E(tk+l) - 
E(tk-1) 

+ 3 
[E(tk-l) 

+ 4E(tk) + Lt(tk+l)] + O(h4). 

Finally, from (6) and (13), there follows 
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E(tk+ 1) 
- 

E(tk-1) = h [F(1) 4 E(tk-1)+ 4F 
F() 

E(tk) + 
F(2) ) E(tk+1)] 

2 (k- ((k-i k h2 [ 3F 
k -1 

() (3) 
k 

3 
+ h F(k I E WIK(k lI,2~E(tj) + 4F(k) E wK(k, ) E(t,) 3 1=0 -t=? 

(14) k +11 

+ F(k+) 
1 wiK(kJ+,, E(ti) 

2=0 

+ 6(hmi l (v +14 ) 

In order to bound the discretization errors at the nodes, the following lemma is 
used, the proof of which is similar to that for Lemma 5.6 (Henrici, [3, p. 243]) and 
Linz's [7] lemma. 

LEMMA. Let Zm e E', m > r, be the solution of 

PkZm+k + + POZm = h(fOkmZm+k + fk-1,m+k-1Zm+k--1 + + f0,mZrn) 

m+k m+kc-1 m \ 

+ h2(E imm+k, JZ + Em+k-1 , Z, + + Im, LZI) + xm 
,=0 1=0 1=0 

where all 1,, and 4, i are nth order matrices and the pi are scalars. Assume the poly- 
nomial p ki + Pk-l k-l + + PO satisfies the Dahlquist stability condition (Henrici 
[3, p. 218]). Thus, if 

1 /(Pk + Pk-l0 + ***+Pt)-7 1 

where Pk #? 0, then F _ sup, Jyj < oo (Henrici [3, p. 242]). Furthermore, assume 
llz,11 < Z, i =o 1, , k + r- 1,andforalli, j, I/3 i l <3, I?,j 11 /, , < X 

Then, for sufficiently small h, 

| 
|z 

|| < K*enhL* n = 0, 1, , N. 

where 

K* = [kFAZ + hb,4*FrZ + NNF]/[1 - hF(o + bu*)], 

L* = [L3*F + b,4*F]/[1 - hF(o + bu*)], 

A = lPOl + + IPnI 
3* = 3(k + 1) and ,* = ,(k + 1). 

Application of the lemma to (14) yields 

||E(tk)|| _ Ke e 

with 

K = [4Z + 4hbwK 3)F(3 rZ + bO(hmin (3,P))]/[1 - h(4F 2) + 4bwF (3)(3))] 

and 

L* = [4 F(2 + 4bwrF(3 K3) ]/[I - h(3Fp2) + 4bwF 3) K 3))] 

where Iw, I < w, i = 0.** , N. Z and r depend on the starting method while p depends 
on the numerical integration method used. From K* and L*, it is readily seen that 
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minimally the starting method should be 0(h3) and p = 3. For this case IIE(tj I = 
0(h3). There follows from (6) and (10), respectively, that I E(tk)H = 0(h3) and IE(tk)I 
-0(h). This proves the following theorem. 

THEOREM 2. If assumptions (a), (b) and (c) are satisfied, x C C'4'[a, b] and 
the starting method and numerical integration method are both 0(h3), then IIE(tk) = 
0(h3), IIE(tk)I = 0(h3) and I IE(tk) I = 0(h). 

The error analysis at nonnodal points proceeds by setting t = t1I+I in (7) and (8), 
solving the resulting equations for E(tk) and E(tj) and substituting these equations 
back into (7) and (8) to obtain 

E(t) = [1 - 3(t - +tk) 2(t - t/,)3]E() + [3(t - tk) - 2(t - tkj)3 

+L[(t- t.k _ 2(_t? + (t -tk> t) 

+ [(t -tk) - (t --k)]2(tk+l) + O(h 4) 

and 

6(t - tk 
_ 6(t 

- 
kij?( 6(t - tk) _6( t 

-___ 
Eht) =[ t3_ k) _ t E(tL) + 

h2 h2) E(tk+l) 

+ [1 4(t tk)+ 9(t tk )]2 ) 3(t -tk )2_ 2(t -tkc)] 7 
+ [I ---h + -h2 -](tk) + [ / 2- h -E(tk + I 

+ O(h3). 

Hence, for tk -<- t < tk+l, 

jjE(t)jj _ |IE(tk)ll + jjE(tk+1)jj + h 11|E(Okll + h 110t-(t 011l + O(h 4) 

and 

6l _ 6(h E(tk)II + hIIE(tk+1)II + -I(t1.)II + 1t-(tk1) + 0(h 3) 

Thus, IE(t)I =0(h3) andI IE(t) I = 0(h2). From (9) and (11) there follows I E(t) = 

0(h). This proves the following theorem. 
THEOREM 3. If the conditions of Theorem 2 are satisfied, then, for t E [a, b], 

t a nonnodcl point, I IE(t)I I = 0(h3), 1 E(t) I = 0(h2) and II E(t) I = 0(h). 

V. A Numerical Example. The scalar equation considered here is 

(t) = 16 (t - I)x(t) + x(u) du + (t- 1 +16' 

x(O) = -1, 

which has the solution x(t) = (t - 1)13/3. Gregory's third-order formula, 

f - h ( Ao + f2t + f2 + + fk-2 + 1 tk- + 12fk) 
0 12 12 ~~~~~12 - 1 
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is used for numerical quadrature. In order to apply Gregory's formula, the values 
x0, x1, x2 and x, are needed. x0 is known. To obtain the other starting values, let 
G(t, x(t)) represent the right side of the above equation, i.e., x(t) = G(t, x(t)), and 
let G, = G(tk, x(tk)). Then 

t k+ -i 

X(tkl 1) = X(tk) + G(t, x(t)) dt 
tk 

and 

rt k+2 

X(tk+2) = X(tk) + G(t, x(t)) dt. 

Thus, using Simpson's rule, 

(15) Xk+l = x1k + 6 (Gk + 4Gk+l/) + Gk+l) 6 

and 

(16) Xk+2 = Xk + 3 (Gk + 4Gkl+ I+ Gk+2) 3 

where tk+1/2 = tk + h/2. The quadratic equation through the points (tk, Xk), (tk+1, 

Xk+l) and (tk+2, Xk+2) evaluated at tk+1/2 provides 

(17) XkA 1/2 = 8Xk + 4Xk+1 8Xk+2 

and, similarly, 

(18) Gk~l,9 = 8Gk + 3Gk+l - 8Gk+2. 

TABLE OF ERRORS 

Step Size 2-' max JE(t2)I, i = 1, 2, 3 
P IE(1.5)1 E(1.5)1 (for starting method) 

2 .865964 X l0- .170270 X 10-2 .636479 X 10-2 

3 .915525 X 10-3 .101191 X 10-2 .423563 X 10-3 

(.108248 X l-O3) (.212838 X l-O3) 

4 .227987 X l0-3 .218648 X l0-3 .274553 X I0-4 

( .114481 X lo- 3) ( .126889 X lo- 3) 

5 .380606 X 10-4 .352258 X 10-4 .174974 X 10-5 
(.284984 X l-O4) (.273310 X l-O4) 

6 .545480 X i0-5 .498293 X i0-5 .110465 X 10-6 
(.475757 X 10-5) (.440322 X 10-5) 

7 .728986 X 10-6 .662161 X 10-6 .693943 X 10-8 
(.681850 X 10-6) (.622616 X 10-6) 

8 .941891 X l0-7 .853280 X l0-7 .434832 X 10-9 
(.911232 X l0-7) (.827701 X 10-7) 
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Equations (15), (16), (17) and (18) are used iteratively to find x, and x2, then x3 and 
x4. The value x4 is not a needed starting value but it is obtained simultaneously 
with x3. The method is used until the difference between two consecutive iterates 
does not exceed 10- 12. This starting method is 0(h4). 

Once the starting values are known, the method of Section III is used with 
Gregory's formula for the numerical integration. Note the method is applied to 
xi, not xi. Once x, is known, then 

xi.= S,-1(t,) and x, 

The above table summarizes the errors corresponding to various step sizes. 
According to the theory, if the step size is halved the errors in E and E should be 
reduced by approximately one-eighth. The numbers in parenthesis are one-eighth 
the error for the previous step size, i.e., the error predicted by the theory when the 
step size is halved. 
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